Indexé dans
  • Base de données des revues académiques
  • Genamics JournalSeek
  • Clés académiques
  • JournalTOCs
  • Infrastructure nationale des connaissances en Chine (CNKI)
  • Scimago
  • Accès à la recherche mondiale en ligne sur l'agriculture (AGORA)
  • Bibliothèque des revues électroniques
  • RechercheRef
  • Répertoire d'indexation des revues de recherche (DRJI)
  • Université Hamdard
  • EBSCO AZ
  • OCLC - WorldCat
  • Catalogue en ligne SWB
  • Bibliothèque virtuelle de biologie (vifabio)
  • Publions
  • MIAR
  • Commission des bourses universitaires
  • Fondation genevoise pour la formation et la recherche médicales
  • Pub européen
  • Google Scholar
Partager cette page
Dépliant de journal
Flyer image

Abstrait

A Gene Expression Profile of Peripheral Blood in Colorectal Cancer

Chi-Shuan Huang, Harn-Jing Terng, Yu-Chin Chou, Sui-Lung Su, Yu-Tien Chang, Chin-Yu Chen, Woan-Jen Lee, Chung-Tay Yao, Hsiu-Ling Chou, Chia-Yi Lee, Chien-An Sun, Ching-Huang Lai, Lu Pai, Chi-Wen Chang, Kang-Hwa Chen, Thomas Wetter, Yun-Wen Shih and Chi-Ming Chu

Background: Optimal molecular markers for detecting colorectal cancer (CRC) in a blood-based assay were evaluated. Microarray technology has shown a great potential in the colorectal cancer research. Genes significantly associated with cancer in microarray studies, were selected as candidate genes in the study. Pooling Internet public microarray data sets can overcome the limitation by the small number of samples in previous studies. Objective: Using public microarray data sets verifies gene expression profiles for colorectal cancer. Methods: Logistic regression analysis was performed, and odds ratios for each gene were determined between CRC and controls. Public microarray datasets of GSE 4107, 4183, 8671, 9348, 10961, 13067, 13294, 13471, 14333, 15960, 17538, and 18105 included 519 cases of adenocarcinoma and 88 controls of normal mucosa, which were used to verify the candidate genes from logistic models and estimated its external generality. Results: A 7-gene model of CPEB4, EIF2S3, MGC20553, MAS4A1, ANXA3, TNFAIP6 and IL2RB was pairwise selected that showed the best results in logistic regression analysis (H-L p=1.000, R2=0.951, AUC=0.999, accuracy=0.968, specificity=0.966 and sensitivity=0.994). Conclusions: A novel gene expression profile was associated with CRC and can potentially be applied to bloodbased detection assays.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié