Indexé dans
  • Accès en ligne à la recherche en environnement (OARE)
  • Ouvrir la porte J
  • Genamics JournalSeek
  • JournalTOCs
  • Scimago
  • Répertoire des périodiques d'Ulrich
  • Accès à la recherche mondiale en ligne sur l'agriculture (AGORA)
  • Bibliothèque des revues électroniques
  • Centre international pour l'agriculture et les biosciences (CABI)
  • RechercheRef
  • Répertoire d'indexation des revues de recherche (DRJI)
  • Université Hamdard
  • EBSCO AZ
  • OCLC - WorldCat
  • érudit
  • Catalogue en ligne SWB
  • Bibliothèque virtuelle de biologie (vifabio)
  • Publions
  • MIAR
  • Commission des bourses universitaires
  • Pub européen
  • Google Scholar
Partager cette page
Dépliant de journal
Flyer image

Abstrait

Advanced Techniques for Morphometric Analysis in Fish

Mojekwu TO *,Anumudu CI

Information on the biology and population structure of any species is a prerequisite for developing management and conservation strategies. Morphometric characters of fish are the measurable characters common to all fishes. Some arbitrarily selected points on a fish body known as landmarks help the individual fish shape to be analyzed. A landmark is a point of correspondence on an object that matches between and within populations. Advanced techniques for morphometric analysis offers more efficient and powerful tools in identify differences between fish populations, detecting differences among groups and to differentiate between species of similar shape. Morphometric methods such as univariate comparisons, bivariate analyses of relative growth pattern and a series of multivariate methods have been developed and applied to discriminate stocks. The use of multivariate techniques such as principal components and discriminant analyses to quantify morphometric variables are also receiving increased attention in stock identification. Some of the advanced techniques developed for morphometric analysis in fish population are Truss network measurement, Image analysis- Univarite, Bivariate, and Multivariate, Principal Component Analysis (PCA).

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié