Indexé dans
  • Ouvrir la porte J
  • Genamics JournalSeek
  • Clés académiques
  • RechercheBible
  • Cosmos SI
  • Accès à la recherche mondiale en ligne sur l'agriculture (AGORA)
  • Bibliothèque des revues électroniques
  • RechercheRef
  • Répertoire d'indexation des revues de recherche (DRJI)
  • Université Hamdard
  • EBSCO AZ
  • OCLC - WorldCat
  • érudit
  • Catalogue en ligne SWB
  • Bibliothèque virtuelle de biologie (vifabio)
  • Publions
  • Fondation genevoise pour la formation et la recherche médicales
  • Pub européen
  • Google Scholar
Partager cette page
Dépliant de journal
Flyer image

Abstrait

Calibration Estimator of Regression Coefficient Using Multi-Auxiliary Variables

Vandita Kumari, Kaustav Aditya

Regression coefficients computed using ordinary least square technique assume that the observations are independent and identically distributed. These assumptions are questionable for the data that are collected using complex survey design. The sampling design information must be incorporated in estimating the regression coefficients from survey data using the sampling weights.An efficient estimator of regression coefficient has been developed by extending the calibration method with multiauxiliary variables that are related to the study variable.The estimators of variance of the proposed calibration estimator have also developed using Taylor series linearization technique and the bootstrap method. The results based on empirical studies using both simulated as well as real datasets show that the proposed calibration estimator performs better than the existing
estimator. In addition, both proposed methods of variance estimation for the calibration estimator perform adequately.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié