Indexé dans
  • Base de données des revues académiques
  • Ouvrir la porte J
  • Genamics JournalSeek
  • JournalTOCs
  • Infrastructure nationale des connaissances en Chine (CNKI)
  • Scimago
  • Répertoire des périodiques d'Ulrich
  • RechercheRef
  • Université Hamdard
  • EBSCO AZ
  • OCLC - WorldCat
  • Publions
  • MIAR
  • Commission des bourses universitaires
  • Fondation genevoise pour la formation et la recherche médicales
  • Pub européen
  • Google Scholar
Partager cette page

Abstrait

Comparing Decision Tree-Based Ensemble Machine Learning Models for COVID-19 Death Probability Profiling

Carlos Pedro Goncalves*, Jose Rouco

Background: Age group, sex and underlying comorbidity or disease have been identified as major risk factors in COVID-19 severity and death risk.

Aim: We compare the performance of major decision tree-based ensemble machine learning models on the task of COVID-19 death probability prediction, conditional on three risk factors: age group, sex and underlying comorbidity or disease, using the US Centers for Disease Control and Prevention (CDC)’s COVID-19 case surveillance dataset.

Method: To evaluate the impact of the three risk factors on COVID-19 death probability, we extract and analyze the conditional probability profile produced by the best performing model.

Result: The results show the presence of an exponential rise in death probability from COVID-19 with the age group, with males exhibiting a higher exponential growth rate than females, an effect that is stronger when an underlying comorbidity or disease is present, which also acts as an accelerator of COVID-19 death probability rise for both male and female subjects. These results are discussed in connection to healthcare and epidemiological concerns and in the degree to which they reinforce findings coming from other studies on COVID-19.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié