Indexé dans
  • Ouvrir la porte J
  • Genamics JournalSeek
  • Clés académiques
  • JournalTOCs
  • RechercheBible
  • Infrastructure nationale des connaissances en Chine (CNKI)
  • Scimago
  • Répertoire des périodiques d'Ulrich
  • Bibliothèque des revues électroniques
  • RechercheRef
  • Université Hamdard
  • EBSCO AZ
  • OCLC - WorldCat
  • Catalogue en ligne SWB
  • Bibliothèque virtuelle de biologie (vifabio)
  • Publions
  • MIAR
  • Services d'indexation scientifique (SIS)
  • Pub européen
  • Google Scholar
Partager cette page
Dépliant de journal
Flyer image

Abstrait

Enhancing the Cell Growth Using Conductive Scaffolds

Lafdi K and Tsonis PA

Conductive biopolymers are starting to emerge as potential scaffolds of the future. These scaffolds exhibit some unique properties such as inherent conductivity, mechanical and surface properties. In this paper, Bio-conductive material were made using three types of carbon nano-fillers including carbon black, nanofiber and graphene. These were mixed with polycaprolactone to fabricate various scaffolds. A human lens epithelial cell was seeded on top of these scaffolds to assay the cell growth. The study of cell growth as a function of concentration, type and orientation of nanofillers and their conductivities was investigated. We found that these biopolymer nanocomposites have a positive effect on cell density. Regardless of the scaffold shape (film or fiber) and the additive’s type, when the concentration of nanoadditives increased, the electrical conductivity and cell density also increased. For a given nano-additive concentration and type, cell density seems to be higher in scaffolds with fiber shape vs. the film shape. However, as the conductivity of the nano-additives increased, so did cell density.