Indexé dans
  • Ouvrir la porte J
  • Genamics JournalSeek
  • Clés académiques
  • JournalTOCs
  • Le facteur d'impact global (GIF)
  • Infrastructure nationale des connaissances en Chine (CNKI)
  • Répertoire des périodiques d'Ulrich
  • RechercheRef
  • Université Hamdard
  • EBSCO AZ
  • OCLC - WorldCat
  • Publions
  • Fondation genevoise pour la formation et la recherche médicales
  • Pub européen
  • Google Scholar
Partager cette page
Dépliant de journal
Flyer image

Abstrait

Fabrication of Surgical Sutures Coated with Curcumin Loaded Gold Nanoparticles

Sunitha S, Adinarayana K, Pankaj T, Sravanthi Reddy P, Sonia G, Nagarjun R, Veerabhadra Swamy C and Sujatha D

Sutures are biomaterials regarded as a major cause of Surgical Site Infections (SSIs). Present work aims at a novel strategy to reduce nosocomial infections by coating sutures with antimicrobial drugs. Gold Nanoparticles (GNPs) coated with antimicrobial drugs are well known for their antimicrobial activity. Hence, synthesis of gold nanoparticles by chemical reduction method followed by preparation of curcumin pegylated GNPs (CPGNPs) were carried out. The formation of the gold nanoparticles, thiolated gold nanoparticles (PGNPs) and CPGNPs was characterized by UV-Vis absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) techniques. The average particle size and polydispersity index of drug conjugated gold NPs were found to be 147.8 nm ± 2.03 nm and 0.286 respectively. The plain sutures (purchased from local market) were coated with curcumin pegylated GNPs by dipping technique and characterized by SEM to ensure the coating of curcumin conjugated gold nanoparticles on plain sutures. The CPGNPs coated sutures were evaluated for mechanical properties, drug release studies, biocompatibility, haemo-compatibility, sensitization and for in vivo studies. Histopathology was also done to study the effect of coated sutures on inflammation and cell repair at the site of surgery. The optimized coated sutures exhibited sustained drug release for 4 days and the antibacterial activity of the coated sutures was noticed in comparison to the uncoated sutures. From in vivo studies, it was clearly evident that coated sutures healed the tissue much faster than the uncoated sutures and less inflammation was observed. The same was concluded by the histopathology reports. The successful designing and development of drug-coated biodegradable sutures highlight the applicability of novel technique of coating for effective reduction of SSIs during the hospital stay.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié