Indexé dans
  • Ouvrir la porte J
  • Genamics JournalSeek
  • Clés académiques
  • JournalTOCs
  • Infrastructure nationale des connaissances en Chine (CNKI)
  • Répertoire des périodiques d'Ulrich
  • RechercheRef
  • Université Hamdard
  • EBSCO AZ
  • Répertoire d'indexation des résumés pour les revues
  • OCLC - WorldCat
  • Publions
  • Fondation genevoise pour la formation et la recherche médicales
  • Pub européen
  • Google Scholar
Partager cette page
Dépliant de journal
Flyer image

Abstrait

Machine Learning in Oncology: What Should Clinicians Know?

Deepak Mane

Abstract:

Over recent years, the amount and scope of scientific and clinical data in oncology has increased significantly, including but not limited to the field of electronic health data, radiographic and histological data and genomics. This growth promises a deeper understanding of malignancy and therefore personalised and more reliable oncological treatment. However, such objectives entail the creation of new methods to allow full use of the wealth of available data. Improvements in computer processing power and the advancement of algorithms have placed master learning, an artificial intelligence branch, in the field of oncology research and practise. This analysis offers a summary of the fundamentals of computer education and addresses recent advances and difficulties in the application of this technology to cancer diagnostics, prognosis, and treatment recommendations.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié