Indexé dans
  • Ouvrir la porte J
  • Genamics JournalSeek
  • Clés académiques
  • JournalTOCs
  • RechercheBible
  • Infrastructure nationale des connaissances en Chine (CNKI)
  • Scimago
  • Répertoire des périodiques d'Ulrich
  • Bibliothèque des revues électroniques
  • RechercheRef
  • Université Hamdard
  • EBSCO AZ
  • OCLC - WorldCat
  • Catalogue en ligne SWB
  • Bibliothèque virtuelle de biologie (vifabio)
  • Publions
  • MIAR
  • Services d'indexation scientifique (SIS)
  • Pub européen
  • Google Scholar
Partager cette page
Dépliant de journal
Flyer image

Abstrait

Preparation, Characterization and Anti-Inflammatory Activity of Swietenia macrophylla Nanoemulgel

Ahmad M Eid, Hesham A El-Enshasy, Ramlan Aziz and Nagib A Elmarzugi

The advances in knowledge about production and stability of dispersed systems enable the development of differentiated vehicles such as nanoemulsions and nanoemulgels, which have been effectively used to increase the bioavailability and improve the stability of the active ingredients. Nowadays there is an intensely usage of natural bioactive materials as medicinal agent in pharmaceutical industries. Swietenia macrophylla oil is used due to the bioactivity of different parts of the plant as anti-inflammatory, anti-mutagenicity, anti-tumor. SM oil Nanoemulgels were prepared by incorporating nanoemulsion with hydrogel. First by preparing mixtures of oil, glycerol with sucrose ester (Laurate, Oleate and Palmitate) to produce pre-nanoemulsion using phase inversion technique, then nanoemulsion was produced using self-emulsification technique. After that, hydrogel was added to nanoemulsion to produce nanoemulgel. It was found that 50% oil with sucrose laurate 20% and 30% glycerol was able to produce pre-nanoemulsion, and then it was diluted with water under gentile agitation to produce nanoemulsion with droplets size 114 nm, low size distribution 0.163 and low zeta potential -43.1 mV. The optimal nanoemulsion formulation was mixed with different grades of hydrogel Carbopol 934 and 940 to produce nanoemulgels. It was found that Carbopol showed no influence on the oil droplets size with a range from 113 to 117 nm, size distribution from 0.155 to 0.163 and zeta potential range from -43.4 to -44.6 mV. In addition, it was able to produce a stable nanoemulgel at different temperatures 4°C, 25°C and 40°C when stored for one year and showed priority as thickening agent in relation to texture and rheological properties when compared to Carbopol 934. The anti-inflammatory test using carrageen an induced rat paw edema method for Swietenia macrophylla oil was carried and it was found that the inflammation inhibition of SM oil was higher for nanoemulgel compared to oil solution.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié