Indexé dans
  • Ouvrir la porte J
  • Genamics JournalSeek
  • Clés académiques
  • JournalTOCs
  • RechercheBible
  • Infrastructure nationale des connaissances en Chine (CNKI)
  • Scimago
  • Répertoire des périodiques d'Ulrich
  • Bibliothèque des revues électroniques
  • RechercheRef
  • Université Hamdard
  • EBSCO AZ
  • OCLC - WorldCat
  • Catalogue en ligne SWB
  • Bibliothèque virtuelle de biologie (vifabio)
  • Publions
  • MIAR
  • Services d'indexation scientifique (SIS)
  • Pub européen
  • Google Scholar
Partager cette page
Dépliant de journal
Flyer image

Abstrait

The Characteristics of Poly Propylene Oxide/Montmorillonite Nanocomposites

Lahouari Mrah, Rachid Meghabar and Mohammed Belbachir

The aim of our study is based to produce the Poly propylene oxyde /clay nanocomposites [3,5,7 and 10% (w/w) Maghnite - CTAB based on the propylene oxyde content] were synthesized by in situ polymerization. Maghnite-CTAB is montmorillonite-CTAB silicate sheet clay was prepared through a straight forward exchange process, polymer composites based on modified montmorillonite (montmorillonite-CTAB) and Poly Propylene Oxyde were prepared with different compositions by melt processing. The maghnite used was obtained with a cation exchange, using a green natural clay from Maghnia which is situated in the west of Algeria. This work is based also to demonstrate a morphology, which is obtained by combining AFM and MEB. The polymer composites were characterized using differenttechniques such as X-ray diffraction (XRD), differential scanning calorimetery (DSC), infrared spectrophotometery (IR),and Microscopic electronics with sweeping (MEB) and Atomic force microscopy (AFM). The results were showed that, the basal space of the silicate layer increased, as determined by XRD, from 12.97 A° to 32.60 A°. The addition of PPO shows distribution of platelets perparticules, and improve the interaction between clay and polymer matrix. The microstructure was detected by X-ray patterns and Microscopic electronics with sweeping (MEB) and Atomic force microscopy (AFM) at 5wt% MMt-CTAB, however, higher than 3 wt% MMt-CTAB reveals partial intercalation structure. The results confirm the presence of several intercalation of molecules salt in the clay layers, and it also shows a good interaction with the polymer.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié