Ueda S et Kishimoto T
Dans cet article, le problème de deux fissures parallèles dans des positions arbitraires d'une bande de matériau piézoélectrique à gradient fonctionnel (FGPM) est analysé dans des conditions de charge thermique transitoire. On suppose que les propriétés thermoélectroélastiques de la bande varient en continu le long de l'épaisseur de la bande et que les faces de la fissure sont supposées être isolées thermiquement et électriquement. En utilisant à la fois la transformée de Laplace et la transformée de Fourier, les problèmes thermiques et électromécaniques sont réduits à deux systèmes d'équations intégrales singulières. Les équations intégrales singulières sont résolues numériquement et une méthode numérique est ensuite utilisée pour obtenir les solutions dépendantes du temps au moyen d'une technique d'inversion de Laplace. Les facteurs d'intensité en fonction du temps pour divers paramètres géométriques et matériels sont calculés et présentés sous forme graphique. Les variations de température, les distributions de contrainte et de déplacement électrique dans un état transitoire sont également incluses.